

ETSI EN300 328 RADIO TEST REPORT

Product Name:

Model Number:

Applicant:

Version C multi function controller for chain stores

BV-C3200

Blueview Elec-optic Tech Co., Ltd.

KeySense Testing & Certification International Co., Ltd.

1-3F, Lab Building, No.29 District, ZhongKai Hi-Tech Industrial Development Park,
Huizhou, Guangdong, China

		Test	Report Vei	rification		
Product name	Version C multi function controller for chain stores					
Model number				BV-C3200		
	Name	Blueview Elec-optic Tech Co., Ltd.				
Applicant	Address		ial Develop		oad, Southwest Aviation iu District, Chengdu City, R.China	
	Name		Blu	eview Elec-optic Tec	h Co., Ltd.	
Manufacturer No.1000, Section 2, 2nd Konggang Road, Southwell Industrial Development Zone, Shuangliu District, Cl Sichuan Province, P.R.China					iu District, Chengdu City,	
	Name		Blueview Elec-optic Tech Co., Ltd.			
Factory	No.1000, Section 2, 2nd Konggang Road, Industrial Development Zone, Shuangliu Di Sichuan Province, P.R.Ch				iu District, Chengdu City,	
Trade Name				ン競馬		
Receipt date	Mai	r 22, 2022		Quantity	1	
Standard		E	ETSI EN 30	0 328 V2.2.2 (2019-0	07)	
Test period	Mar 22, 20)22- Apr 0	1, 2022	Issue Date	Apr 20 2022	
Test result	The device described above is tested by KeySense Testing & Certification International Co., Ltd. The measurement results were contained in this test report and KeySense Testing & Certification International Co., Ltd. was assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT to be technically compliance with the ETSI EN 300 328 requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of KeySense Testing & Certification International Co., Ltd.					
Tested by: Bing.	.He		Sign:	1 (Ne Date:) of	2.430	
Reviewed by: Ja	ack.Li		Sign:	hm Date: 2.	22 4 20 (Stamp)	
Approved by:To			Sig n. [Date: 707	12.4.20	

CONTENTS

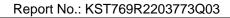
Jes	cript	ion Page
1.	SUM	IMARY OF MEASUREMENTS AND RESULTS5
		Compliance with ETSI EN 300 328 V2.2.2 (2019-07)5
2.	ENE	RAL INFORMATION6
	2.1.	Description of Device (EUT)6
	2.2.	Test Facilities
	2.3.	Measurement uncertainty8
	2.4.	Standard Description9
	2.5.	Assistant equipment used for test
	2.6.	Block Diagram of Test Setup11
	2.7.	Test mode11
	2.8.	Channel List11
3.	MEA	ASUREMENTS OF PARAMETERS (ETSI EN 300 328)12
	3.1.	RF Output Power
	3.2.	Power Spectral Density15
	3.3.	Duty Cycle ,Tx-Sequence, Tx-gap18
	3.4.	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence 19
	3.5.	Medium Utilization (MU) factor
	3.6.	Adaptivity21
	3.7.	Occupied Channel Bandwidth
	3.8.	Transmitter unwanted emissions in the out-of-band domain
	3.9.	Transmitter unwanted emissions in the spurious domain
	3.10	. Receiver Spurious Emissions34

	3.11. Receiver Blocking	37
	3.12. Geo-location capability	41
4.	PHOTOGRAPHS OF TEST SETUP	42
	4.1. Set-up for Transmitter & Receiver Spurious Emissions, Below 1GHz & Above 1GHz	
	4.2. Set-up for Radio Spectrum Testing, Condition	42
5	PHOTOGRAPHS OF FUT	43

1. SUMMARY OF MEASUREMENTS AND RESULTS

1.1.Compliance with ETSI EN 300 328 V2.2.2 (2019-07)

-	Harmonized Standard EN300 328 The following essential requirements and test specifications are relevant to the								
	presumption of conformity under Article 3.2 of the RE Directive 2014/53/EU								
No	Test Parameter	Clause No	Condition	Results					
	Transmitter Parameters								
1	RF Output Power	4.3.1.2 or 4.3.2.2	Apply all equipment	PASS					
2	Power Spectral Density	4.3.2.3	Only for modulations other than FHSS	PASS					
3	Duty Cycle ,Tx-Sequence, Tx-gap	4.3.1.3 or 4.3.2.4	Only for non-adaptive equipment	N/A					
4	Accumulated Transmit Time, Frequency Occupation & Hopping Sequence	4.3.1.4	Only for FHSS	N/A					
5	Hopping Frequency Separation	4.3.1.5	Only for FHSS	N/A					
6	Medium Utilization	4.3.1.6 or 4.3.2.5	Only for non-adaptive equipment	N/A					
7	Adaptivity	4.3.1.7 or 4.3.2.6	Only for adaptive equipment	N/A					
8	Occupied Channel Bandwidth	4.3.1.8 or 4.3.2.7	Apply all equipment	PASS					
9	Transmitter unwanted emissions in the OOB domain	4.3.1.9 or 4.3.2.8	Apply all equipment	PASS					
10	Transmitter unwanted emissions in the spurious domain	4.3.1.10 or 4.3.2.9	Apply all equipment	PASS					
11	Receiver spurious emissions	4.3.1.11 or 4.3.2.10	Apply all equipment	PASS					
12	Receiver Blocking	4.3.1.12 or 4.3.2.11	Apply all equipment	PASS					
13	Geo-location capability	4.3.1.13 or 4.3.2.12	If implemented	N/A					


Note: N/A is an abbreviation for Not Applicable and means this test item is not applicable for this device according to the technology characteristic of device.

2. ENERAL INFORMATION

2.1.Description of Device (EUT)

Product Name	:	Remote Control
Model Number	:	BV-C3200
Modulation	:	O-QPSK(DSSS)
Operation Frequency	:	2405MHz ~ 2480MHz
Number of channel	:	16 Channels
Antenna and Gain	:	External antenna , 3.4dBi Gain
Test Voltage	:	AC 230V/50Hz

2.2.Test Facilities

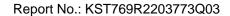
Site Description 1-3F, Lab Building, No.29 District, ZhongKai Hi-Tech Industrial Development

Park, Huizhou, Guangdong, China KeySense Testing & Certification International Co., Ltd. Name of Firm:

EMC Lab Certificated by CNAS, CHINA

Registration No.: L9678

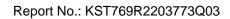
Date of registration: Feb 07, 2017



2.3. Measurement uncertainty

	1 dB
Uncertainty for Radiated Spurious Emission test in	(Bilog antenna 30M~1000MHz)
RF chamber	0.9 dB
	(Horn antenna 1000M~25000MHz)
Uncertainty for Conduction Spurious emission test	2.10 dB
Uncertainty for Output power test	0.94 dB
Uncertainty for Power density test	2.10 dB
Uncertainty for Tomporature and humidity toot	2%
Uncertainty for Temperature and humidity test	1℃
Uncertainty for Frequency range test	1×10-6
Uncertainty for Bandwidth test	1×10-6
Uncertainty for DC power test	0.042 %
Uncertainty for test site temperature and humidity	0.6℃
Uncertainty for test site temperature and humidity	3%

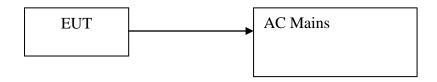
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



2.4. Standard Description

ETSI EN 300 328 V2.2.2 (2019-07): Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU.

2.5.Assistant equipment used for test


2.5.1.Notebook

M / N : 13IML Manufacturer : Lenovo

2.6.Block Diagram of Test Setup

2.7.Test mode

The test software was used to control EUT work in Continuous TX or RX mode, and select test channel, wireless mode

Test mode	Lower	Center	Upper
	channel	channel	channel
Transmitting	2405MHz	2440MHz	2480MHz
Receiving	2405MHz	2440MHz	2480MHz

2.8.Channel List

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
11	2405MHz	15	2425MHz	19	2445MHz	23	2465MHz	
12	2410MHz	16	2430MHz	20	2450MHz	24	2470MHz	
13	2415MHz	17	2435MHz	21	2455MHz	25	2475MHz	
14	2420MHz	18	2440MHz	22	2460MHz	26	2480MHz	

3. MEASUREMENTS OF PARAMETERS (ETSI EN 300 328)

3.1.RF Output Power

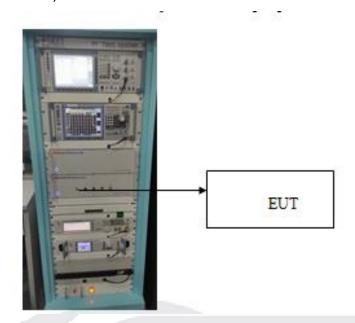
3.1.1.Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval		
Spectrum	Rohde & Schwarz	FSV	103559	Dec 06,2021	1 Year		
Vector signal source	Agilent	N5182A	MY47420382	Dec 06,2021	1 Year		
Analog signal source	Rohde & Schwarz	SMB 100A	179706	Dec 06,2021	1 Year		
Comprehensive measuring instrument	Rohde & Schwarz	CMW 500	158242	Dec 06,2021	1 Year		
control unit		MW100-RFC B	10165	Dec 06,2021	1 Year		
Testing software	SKET	MTS-8310	10165	Dec 06,2021	1 Year		
N/A is an abbreviation for N	N/A is an abbreviation for Not Applicable.						

3.1.2.Limit (ETSI EN 300 328 V2.2.2 (2019-07))

Refer to chapter 4.3.2.2 of EN 300 328 V2.2.2.

The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm.


The maximum RF output power for non-adaptive Frequency Hopping equipment shall be declared by the manufacturer. See clause 5.4.1 m). The maximum RF output power for this equipment shall be equal to or less than the value declared by the manufacturer. This declared value shall be equal to or less than 20 dBm.

This limit shall apply for any combination of power level and intended antenna assembly.

3.1.3.Test Method

(1) Connected the antenna port to the OSP of MTS-8310 system, read output power of the transmitter. (As below).

- (2) Test conditions refer to chapter 5.4.2.1 of EN 300 328 V2.2.2.
- (3) Test method refer to chapter 5.4.2.2.1.2 of EN 300 328 V2.2.2.

3.1.4.Test Information

EUT:	Version C multi function controller for chain stores		
M/N:	BV-C3200		
Test Da	te: 2022.03.22	Tested by:Bing.He	
Ambient Temperature: 23℃		Relative Humidity: 54%	

3.1.5.Test Results

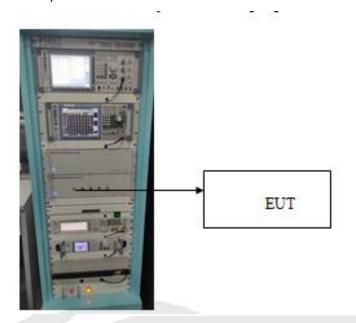
Test mode:TX		Test result: Pass	 	
Test condition	Frequency (MHz)	Max EIRP (dBm)	Limit (dBm)	Result
Normal	2405	6.21		Pass
T:23°C	2440	6.20		Pass
V: AC 230V	2480	6.89		Pass
Extreme	2405	6.21		Pass
T:0°C	2440	6.20	20	Pass
V: AC 230V	2480	6.89		Pass
Extreme	2405	6.44		Pass
T:45°C	2440	6.33		Pass
V: AC 230V	2480	6.56		Pass

3.2.Power Spectral Density

3.2.1.Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval			
Spectrum	Rohde & Schwarz	FSV	103559	Dec 06,2021	1 Year			
Vector signal source	Agilent	N5182A	MY47420382	Dec 06,2021	1 Year			
Analog signal source	Rohde & Schwarz	SMB 100A	179706	Dec 06,2021	1 Year			
Comprehensive measuring instrument	Rohde & Schwarz	CMW 500	158242	Dec 06,2021	1 Year			
control unit	MWRF	MW100-RFC B	10165	Dec 06,2021	1 Year			
Testing software	SKET	MTS-8310	10165	Dec 06,2021	1 Year			
N/A is an abbreviation for N	N/A is an abbreviation for Not Applicable.							

3.2.2.Limit (ETSI EN 300 328 V2.2.2 (2019-07))

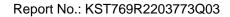

Refer to chapter 4.3.2.3 of EN 300 328 V2.2.2.

For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10 dBm per MHz.

3.2.3.Test Method

(1) Connected the antenna port to the OSP of MTS-8310 system, read output power of the transmitter. (As below).

- (2) Configure EUT work in TX operation mode.
- (3) Test conditions refer to chapter 5.4.3.1 of EN 300 328 V2.2.2.
- (4) Test method refer to chapter 5.4.3.2.1 of EN 300 328 V2.2.2.



3.2.4.Test Information

EUT:	Version C multi function controller for chain stores		
M/N:	BV-C3200		
Test Date: 2022.03.22		Tested by:Bing.He	
Ambient Temperature: 23°C		Relative Humidity: 54%	

3.2.5.Test Results

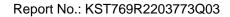
Test mode: TX						
Test result: P	Test result: Pass					
Test Mode	Frequency (MHz)	Level (dBm)	Limit (dBm)	Result		
	2405	5.01		Pass		
TX	2440	5.33	10	Pass		
	2480	5.12		Pass		
	7					

3.3. Duty Cycle ,Tx-Sequence, Tx-gap

N/A (Not Applicable)

These requirements apply to non-adaptive equipment or to adaptive equipment when operating in a non-adaptive mode. The equipment is using wide band modulations other than FHSS.

These requirements do not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p.



3.4. Accumulated Transmit Time, Frequency Occupation and Hopping

Sequence

N/A (Not Applicable)
Only for FHSS equipment.

3.5.Medium Utilization (MU) factor

N/A (Not Applicable)

This requirement does not apply to adaptive equipment unless operating in a non-adaptive mode.

In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p.

3.6.Adaptivity

N/A (Not Applicable)

This requirement does not apply to non-adaptive equipment or adaptive equipment operating in a non-adaptive mode providing the equipment complies with the requirements and/or restrictions applicable to non-adaptive equipment.

In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p.

3.7. Occupied Channel Bandwidth

3.7.1.Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Spectrum	Rohde & Schwarz	FSV	103559	Dec 06,2021	1 Year
Vector signal source	Agilent	N5182A	MY47420382	Dec 06,2021	1 Year
Analog signal source	Rohde & Schwarz	SMB 100A	179706	Dec 06,2021	1 Year
Comprehensive measuring instrument	Rohde & Schwarz	CMW 500	158242	Dec 06,2021	1 Year
control unit	MWRF	MW100-RFC B	10165	Dec 06,2021	1 Year
Testing software	SKET	MTS-8310	10165	Dec 06,2021	1 Year
N/A is an abbreviation for Not Applicable.					

3.7.2.Limit (ETSI EN 300 328 V2.2.2 (2019-07))

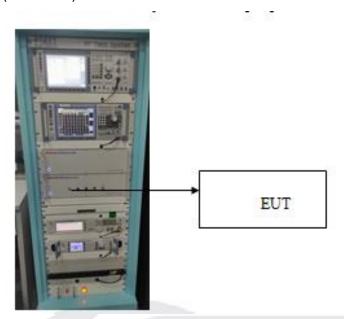
Refer to chapter 4.3.2.7 of EN 300 328 V2.2.2.

This requirement applies to all types of equipment using wide band modulations other than FHSS.

The Occupied Channel Bandwidth is the bandwidth that contains 99 % of the power of the signal.

The Occupied Channel Bandwidth shall fall completely within the band given in table 1.

In addition, for non-adaptive equipment using wide band modulations other than FHSS and with e.i.r.p. greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz.


Table 1: Service frequency bands

	Service frequency bands
Transmit	2 400 MHz to 2 483,5 MHz
Receive	2 400 MHz to 2 483,5 MHz

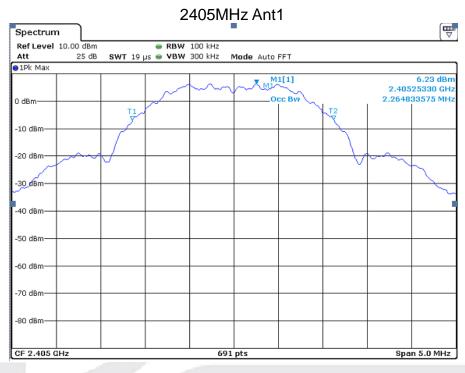
3.7.3.Test method

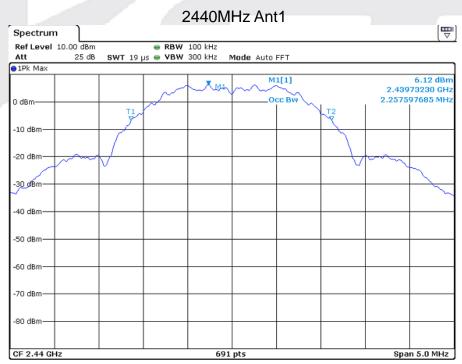
(1) Connected the antenna port to the OSP of MTS-8310 system, read output power of the transmitter. (As below).

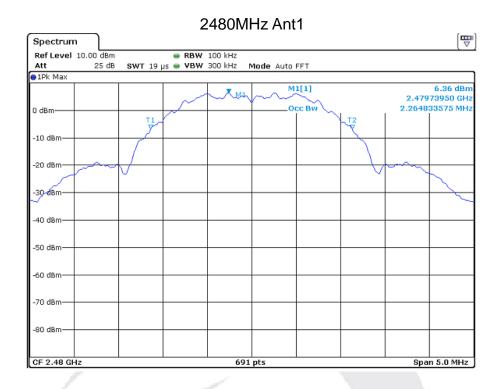
- (2) Configure EUT work in lowest and highest TX frequency.
- (3) Test conditions refer to chapter 5.4.7.1 of EN 300 328 V2.2.2.
- (4) Test method refer to chapter 5.4.7.2.1 of EN 300 328 V2.2.2.

3.7.4.Test Information

EUT:	Version C multi function controller for chain stores		
M/N:	BV-C3200		
Test Date:2022.03.23		Tested by:Bing.He	
Ambient Temperature: 23°C		Relative Humidity: 54%	


3.7.5.Test Results


Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Limit OBW (MHz)	Verdict
2405	2405.253	2.265	2400 - 2483.5MHz	Pass
2440	2439.732	2.258	2400 - 2483.5MHz	Pass
2480	2479.739	2.265	2400 - 2483.5MHz	Pass

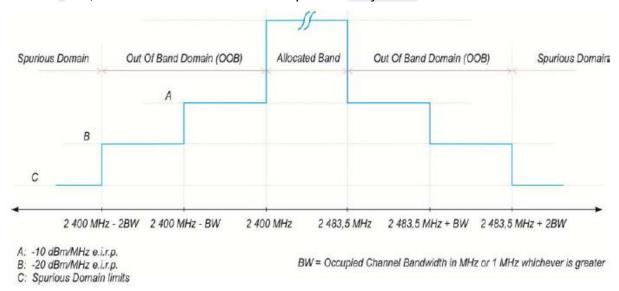


3.7.6. Original test data

3.8. Transmitter unwanted emissions in the out-of-band domain

3.8.1.Test Equipment

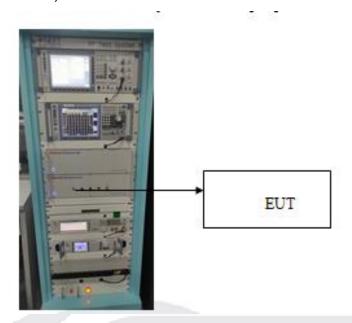
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Spectrum	Rohde & Schwarz	FSV	103559	Dec 06,2021	1 Year
Vector signal source	Agilent	N5182A	MY47420382	Dec 06,2021	1 Year
Analog signal source	Rohde & Schwarz	SMB 100A	179706	Dec 06,2021	1 Year
Comprehensive measuring instrument	Rohde & Schwarz	CMW 500	158242	Dec 06,2021	1 Year
control unit	MWRF	MW100-RFC B	10165	Dec 06,2021	1 Year
Testing software	SKET	MTS-8310	10165	Dec 06,2021	1 Year
N/A is an abbreviation for Not Applicable.					


3.8.2.Limit ((ETSI EN 300 328 V2.2.2 (2019-07))

Refer to chapter 4.3.2.8 of EN 300 328 V2.2.2.

This requirement applies to all types of equipment using wide band modulations other than FHSS.

Transmitter unwanted emissions in the out-of-band domain are emissions when the equipment is in Transmit mode, on frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious emissions.


The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask as follow:

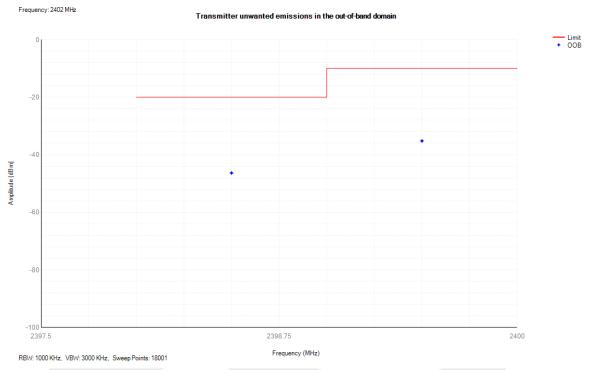
3.8.3.Test method

(1) Connected the antenna port to the OSP of MTS-8310 system, read output power of the transmitter. (As below)

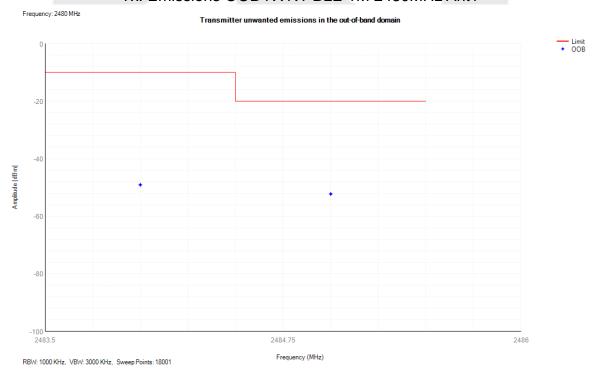
- (2) Configure EUT work in TX mode.
- (3) Test conditions refer to chapter 5.4.8.1 of EN 300 328 V2.2.2.
- (4) Test method refer to chapter 5.4.8.2.1 of EN 300 328 V2.2.2.

3.8.4.Test Information

EUT:	Version C multi function controller for chain stores		
M/N:	BV-C3200		
Test Date: 2022.03.27		Tested by:Bing.He	
Ambient Temperature: 23°C		Relative Humidity: 54%	


3.8.5.Test Results

Condition	Mode	Frequency	OOB Frequency	Level	Limit	Verdict
Condition	Mode	(MHz)	(MHz)	(dBm/MHz)	(dBm/MHz)	vertict
NVNT	TX	2405	2399.5	-35.21	-10	Pass
NVNT	TX	2405	2398.5	-46.33	-20	Pass
NVNT	TX	2480	2484	-49.03	-10	Pass
NVNT	TX	2480	2485	-52.17	-20	Pass



3.8.6.Original test data

Tx. Emissions OOB NVNT BLE 1M 2405MHz Ant1

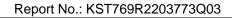
Tx. Emissions OOB NVNT BLE 1M 2480MHz Ant1

3.9. Transmitter unwanted emissions in the spurious domain

3.9.1.Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
Spectrum analyzer	R&S	FSV30	103559	Dec 06,2021	1 year
Trilog-boardba nd antenna	Schwarzbeck	VULB 9163D	9163-971	Dec 06,2021	3 years
Horn antenna	Schwarzbeck	BBHA 9120D	9120D-1590	Dec 06,2021	3 years
Horn antenna	ETS	3160-09	00208373	Dec 06,2021	3 years
Pre-amplifier (Low Freq)	Claviio	BDLNA-000 1-272007	1600015	Dec 06,2021	3 years
Pre-amplifier (High Freq)	Claviio	BDLNA-011 8-352810	1600019	Dec 06,2021	3 years
Pre-amplifier (High Freq)	Claviio	BDLNA-182 6-483105	1600013	Dec 06,2021	3 years

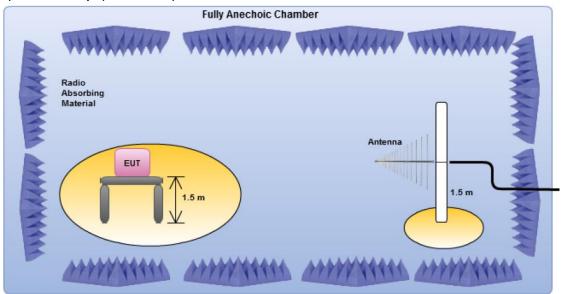
3.9.2.Limit (ETSI EN 300 328 V2.2.2 (2019-07))


Refer to chapter 4.3.2.9 of EN 300 328 V2.2.2.

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 12.

n case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and as e.i.r.p. for emissions above 1 GHz.

Table 12: Transmitter limits for spurious emissions


Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

3.9.3.Test Method

(1) Test Setup.(As Below)

- (2) Test conditions refer to chapter 5.4.9.1 of EN 300 328 V2.2.2.
- (3) Test method refer to chapter 5.4.9.2.2 of EN 300 328 V2.2.2.

3.9.4.Test Information

EUT:	Version C multi function controller for chain stores
M/N:	BV-C3200
Test Date:	2022.03.28
Test standard:	ETSI EN 300 328 V2.2.2 (2019-07)
Test mode:	BLE(GFSK)
Test By:	Bing.He

3.9.5.Test Results

30MHz to 1GHz							
EUT mode	Frequency (MHz)	Spurious emissions level (dBm)	Limit (dBm)	Conclusion	Antenna Pole (H/V)		
TV Mada	44.45	-63.22	-54.00	Pass	Н		
TX Mode	167.98	-61.09	-54.00	Pass	V		

 [&]quot;H" mean is horizontal direction, "V" mean is vertical direction.
 The worst case has recorded in the report.

		Above 1GHz			
EUT mode	Frequency (MHz)	Spurious emissions level (dBm)	Limit (dBm)	Conclusion	Antenna Pole (H/V)
	4810.00	-45.22	-30.00	Pass	Н
2405MHz -	7215.00	-48.89	-30.00	Pass	Н
	4810.00	-45.56	-30.00	Pass	V
	7215.00	-48.33	-30.00	Pass	V
	4960.00	-45.38	-30.00	Pass	Н
0.400MI.I=	7440.00	-45.34	-30.00	Pass	Н
2480MHz	4960.00	-45.89	-30.00	Pass	V
	7440.00	-49.70	-30.00	Pass	V

3.10.Receiver Spurious Emissions

3.10.1.Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	II ast (:al	Cal. Interval
Spectrum analyzer	R&S	FSV30	103559	Dec 06,2021	1 year
Trilog-boardband antenna	Schwarzbeck	VULB 9163D	9163-971	Dec 06,2021	3 years
Horn antenna	Schwarzbeck	BBHA 9120D	9120D-1590	Dec 06,2021	3 years
Horn antenna	ETS	3160-09	00208373	Dec 06,2021	3 years
Pre-amplifier (Low Freq)	Claviio	BDLNA-0001- 272007	1600015	Dec 06,2021	3 years
Pre-amplifier (High Freq)	Claviio	BDLNA-0118- 352810	1600019	Dec 06,2021	3 years
Pre-amplifier (High Freq)	Claviio	BDLNA-1826- 483105	1600013	Dec 06,2021	3 years
Calibration Lab:	CEPREI Calibra	tion and Testin	g Center		

3.10.2.Limit (ETSI EN 300 328 V2.2.2 (2019-07)

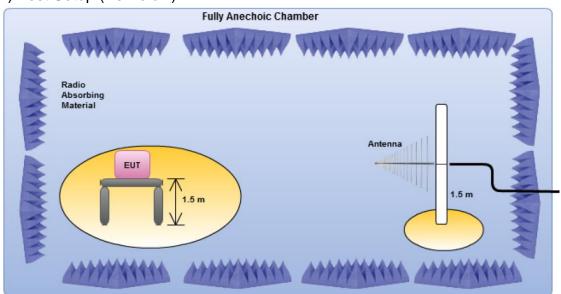
Refer to chapter 4.3.2.10 of EN 300 328 V2.2.2.

This requirement applies to all types of equipment using wide band modulations other than FHSS.

Receiver spurious emissions are emissions at any frequency when the equipment is in receive mode.

The spurious emissions of the receiver shall not exceed the values given in table 13.

In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or for emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz.


Table 13: Spurious emission limits for receivers

Frequency range	Maximum power	Bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

3.10.3.Test Method

(1) Test Setup.(As Below)

- (2) Test conditions refer to chapter 5.4.10.1 of EN 300 328 V2.2.2.
- (3) Test method refer to chapter 5.4.10.2.2 of EN 300 328 V2.2.2.

3.10.4.Test Information

EUT:	Version C multi function controller for chain stores
M/N:	BV-C3200
Test Date:	2022.03.28
Test standard:	ETSI EN 300 328 V2.2.2 (2019-07)
Test mode:	BLE(GFSK)
Test By:	Bing.He

3.10.5.Test Results

EUT mode	Frequency (MHz)	Spurious emissions level (dBm)	Limit (dBm)	Conclusion	Antenna Pole (H/V)
	32.00	-63.89	-57.00	Pass	Н
DV Mada	1567.99	-56.32	-47.00	Pass	Н
RX Mode	101.22	-63.88	-57.00	Pass	V
	2102.89	-59.34	-47.00	Pass	V

^{1、&}quot;H" mean is horizontal direction, "V" mean is vertical direction.。

 $^{2\}sqrt{\ }$ The worst case has recorded in the report.

3.11.Receiver Blocking

3.11.1.Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
Spectrum	Rohde & Schwarz	FSV	103559	Dec 06,2021	1 Year	
Vector signal source	Agilent	N5182A	MY47420382	Dec 06,2021	1 Year	
Analog signal source	Rohde & Schwarz	SMB 100A	179706	Dec 06,2021	1 Year	
Comprehensive measuring instrument	Rohde & Schwarz	CMW 500	158242	Dec 06,2021	1 Year	
control unit	MWRF	MW100-RFC B	10165	Dec 06,2021	1 Year	
Testing software	SKET	MTS-8310	10165	Dec 06,2021	1 Year	
N/A is an abbreviation for Not Applicable.						

3.11.2.Limit (ETSI EN 300 328 V2.2.2 (2019-07))

Refer to chapter 4.3.2.11 of EN 300 328 V2.2.2.

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

This requirement applies to all receiver categories.

Receiver Catergory							
⊠Category 1	Category 2	Category 3					
Minimum performance							
criterion	Alternative performance cri	teria(See Note)					
Note: The manufacturer was	declared performance criteria is	s x% for the intended use of the					
equipment							

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
P _{min} + 6 dB	2 380 2 503,5	-53	CW
P _{min} + 6 dB	2 300 2 330 2 360	-47	CW
P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 673,5	-47	CW

NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal.

NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

3.11.3.Test Method

(1) Test Setup.(As Below)

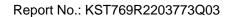
- (2) Test conditions refer to chapter 5.4.11.1 of EN 300 328 V2.2.2.
- (3) Test method refer to chapter 5.4.11.2.1 of EN 300 328 V2.2.2.

3.11.4.Test information

EUT:	Version C multi function controller for chain stores
M/N:	BV-C3200
Test Date:	2022.03.28
Test standard:	ETSI EN 300 328 V2.2.2
Test mode:	BLE(GFSK) Low Channel and High Channel (Worst)
Test By:	Bing.He

3.11.5.Test Results

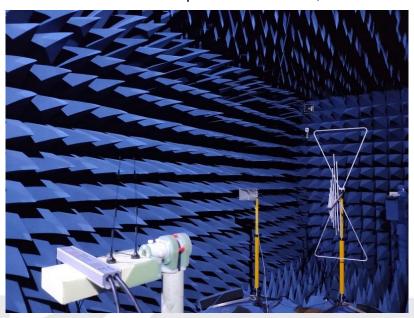
Test Mode	Frequenc	Wanted signal mean power	Blocking signal	Blocking signal	PER	Limit	Result
	(MHz)	from companion device (dBm)	frequency (MHz)	power (dBm)	(%)	(%)	
		-68	2380		1.22	10.00	Pass
	2405	-74	2300		1.98	10.00	Pass
	2405		2330		1.32	10.00	Pass
GFSK			2360	-34	4.71	10.00	Pass
	2480	-68	2504	-34	3.22	10.00	Pass
			2524		2.01	10.00	Pass
	2400	-74	2584		2.41	10.00	Pass
			2674		2.71	10.00	Pass

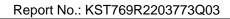

3.12.Geo-location capability

N/A (Not Applicable)

This requirement only applies to equipment with geo-location capability.

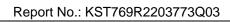
Geo-location capability is a feature of the equipment to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates.


The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location.

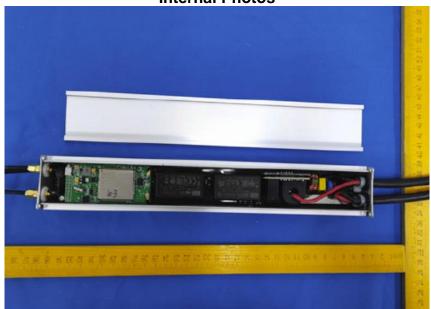

4. PHOTOGRAPHS OF TEST SETUP

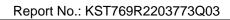
4.1. Set-up for Transmitter & Receiver Spurious Emissions, Below 1GHz & Above 1GHz

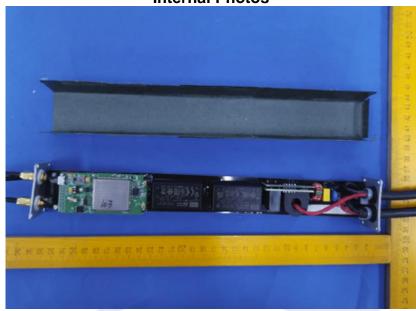
4.2. Set-up for Radio Spectrum Testing, Condition

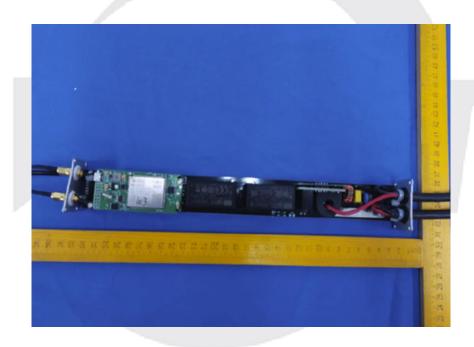


5. PHOTOGRAPHS OF EUT









..... End of Report

Statement

- The calibration and measurement of test equipments used in our laboratory are traceable to National primary standard of measurement and BIPM.
- 2. The report is invalid without the special test seal of the company.
- 3. The test report is invalid without the signature of main tester, examiner and approver.
- 4. The report is invalid if altered and added or deleted.
- 5. The test results in this report only apply to the tested samples.
- 6. This test report shall not be reproduced except in full, without the written approval of our laboratory.
- 7. "x"item cannot be Accredited by CNAS.
- 8. Any objections must be raised to KeySense within 15days since the date when report is received.

Test Laboratory: KeySense Testing & Certification International Co., Ltd.

Address: 1-3F,Lab Building,No.29 District,ZhongKai Hi-Tech Industrial

Development Park, Huizhou, Guangdong, China

Postcode: 516006 Fax: 0752-3219929

Tel: 0752-3219929 E-mail: keysense@kst-cert.com